Julia H. Yang, Ph.D. Environmental Fellow, Harvard University

SUMMARY

I am a **computational materials scientist** focused on **sustainability** challenges in **energy storage**. My research advances and applies first-principles and machine learning approaches to navigate chemical space and design urgently-needed materials for **energy and the environment**.

EDUCATION

Harvard University	Cambridge, MA
- Postdoctoral advisor: Prof. Boris Kozinsky	July 2022 – present
 Independent research proposal funded through Harvard University Center for 	r the Environment
	D. L.L. CA
Ph D in Materials Science & Engineering	Aug 2016–May 2022
 Thesis advisor: Prof. Gerbrand Ceder 	1148. 2010 1149 2022
 Thesis: Computational Understanding of Ionic Systems for Advanced Energy 	v Storage Materials
– Minors: Physics, Statistics	0
Carnegie Mellon University B.S. in Materials Science & Engineering, additional major in Physics	Pittsburgh, PA Aug. 2012–May 2016
– Honors research advisor: <u>Prof. Elias Towe</u>	
– Honors project: Thermal Transport in Two-Dimensional Semiconductors	
Experience	
Harvard University Environmental Fellow, John A. Paulson School of Engineering and Applied Science	Cambridge, MA es July 2022 –present
– Advised by: Prof. Boris Kozinsky	
 Use density functional theory, computational chemistry, and machine learnin electrochemical stability of explicit solvents 	g to model thermal and
- Experimental collaboration with Park group (Columbia University)	
- 4 journal publications in preparation (1 first-author/corresponding author)	
Columbia University	New York City, NY
Postdoctoral Fellow, Fu Foundation School of Engineering and Applied Science	July 2022 – Aug. 2022
– Advised by: Prof. Ah-Hyung Alissa Park	
- Applied electrochemical methods to study electrodeposition of critical materi	ials in organic solvents
University of California, Berkeley Graduate Student Researcher, Department of Materials Science & Engineering	Berkeley, CA Aug. 2016 – May 2022
 Advised by: Prof. Gerbrand Ceder 	

Page 1 of 7

- Advanced coupled cluster expansion lattice models to study high energy and high power density lithium-ion battery electrodes
- Evaluated phase stability in earth-abundant electrodes using first-principles calculations
- Rationalized origin of systematic error in density functional theory approximations for ionic systems
- 13 journal publications (5 first or co-first author, 1 corresponding author)

X (formerly Google X), the Moonshot Factory

AI Resident

- Advised by: Dr. Alexander Holiday
- Developed machine learning platform to optimize chemical recycling of waste plastics
- 4 filed patents (1 first-author patent)

Johns Hopkins Applied Physics Laboratory

Technical Aide

Laurel, MD May 2016 –July 2016

Mountain View, CA

May 2021 – Sept 2021

- Performed optical analysis of stray photon emission from discarded field-programmable gate arrays for hardware espionage
- Developed experimental setup used in a NASA mission proposal

Honors & Awards

NextProf Nexus at Georgia Institute of Technology	Aug. 2023
Harvard University Center for the Environment Environmental Fellow	July 2022–July 2024
National Defense Science and Engineering Graduate Fellow	Aug. 2016–Aug. 2019
Carnegie Mellon University University Honors	May 2016
Carnegie Mellon University College of Engineering Honors	May 2016
Carnegie Mellon University Senior Leadership Award	May 2016
• U.C. Berkeley Materials Science & Engineering Rising Star Scholarship	Awarded Jan. 2016
Semiconductor Research Corporation Undergraduate Fellowship	Jan. 2014–May 2016
Tau Beta Pi Engineering Honors Society	May 2015

PUBLICATIONS

- J. H. Yang[†] and G. Ceder[†], "Activated internetwork pathways in partially-disordered spinel cathode materials with ultrahigh rate performance", *Adv. Energy Mater.*, vol. 13, no. 4, p. 2202955, 2023. DOI: 10.1002/aenm.202202955.
- [2] Z. Jadidi, J. H. Yang, T. Chen, L. Barroso-Luque, and G. Ceder, "Ab-initio study of short-range ordering in vanadium-based disordered rocksalt structures", J. Mater. Chem. A, vol. 11, pp. 17728–17736, 2023. DOI: 10.1039/D3TA02475J.
- [3] R. Kam, K. Jun, L. Barroso-Luque, J. H. Yang, F. Xie, and G. Ceder, "Crystal structures and phase stability of the Li₂S-P₂S₅ system from first principles", Chem. Mater., vol. 35, pp. 9111–9126, 21 2023. DOI: 10.1021/acs.chemmater.3c01793.
- [4] L. Barroso-Luque, J. H. Yang, F. Xie, T. Chen, R. L. Kam, Z. Jadidi, P. Zhong, and G. Ceder, "Smol: A python package for cluster expansions and beyond", J. Open Source Softw., vol. 7, no. 77, p. 4504, 2022. DOI: 10.21105/joss.04504.

- [5] L. Barroso-Luque, P. Zhong, J. H. Yang, F. Xie, T. Chen, B. Ouyang, and G. Ceder, "Cluster expansions of multicomponent ionic materials: Formalism and methodology", *Phys. Rev. B*, vol. 106, no. 14, p. 144 202, 2022. DOI: 10.1103/PhysRevB.106.144202.
- [6] T. Chen, J. H. Yang, L. Barroso-Luque, and G. Ceder, "Removing the two-phase transition in spinel LiMn₂O₄ through cation disorder", ACS Energy Lett., vol. 8, no. 1, pp. 314–319, 2022. DOI: 10.1021/acsenergylett.2c02141.
- [7] J. H. Yang, T. Chen, L. Barroso-Luque, Z. Jadidi, and G. Ceder, "Approaches for handling high-dimensional cluster expansions of ionic systems", *npj Comput. Mater.*, vol. 8, no. 1, p. 133, 2022. DOI: 10.1038/s41524-022-00818-3.
- [8] L. Barroso-Luque, J. H. Yang, and G. Ceder, "Sparse expansions of multicomponent oxide configuration energy using coherency and redundancy", *Phys. Rev. B*, vol. 104, p. 224 203, 22 2021. DOI: 10.1103/PhysRevB.104.224203.
- [9] J. H. Yang, H. Kim, and G. Ceder, "Insights into Layered Oxide Cathodes for Rechargeable Batteries", *Molecules*, vol. 26, no. 11, 2021. DOI: 10.3390/molecules26113173.
- [10] H. Kim, D.-H. Kwon, J. C. Kim, B. Ouyang, H. Kim, J. H. Yang, and G. Ceder, "Na+ Redistribution by Electrochemical Na+/K+ Exchange in Layered Na_xNi₂SbO₆", Chem. Mater., vol. 32, no. 10, pp. 4312–4323, 2020. DOI: 10.1021/acs.chemmater.0c01152.
- [11] J. C. *. Kim, D.-H. *. Kwon, J. H. Yang*, H. Kim, S.-H. Bo, L. Wu, H. Kim, D.-H. Seo, T. Shi, J. Wang, Y. Zhu, and G. Ceder, "Direct Observation of Alternating Octahedral and Prismatic Sodium Layers in O3-Type Transition Metal Oxides", Adv. Energy Mater., vol. 10, no. 31, p. 2001 151, 2020. DOI: https://doi.org/10.1002/aenm.202001151.
- [12] J. H. Yang, D. A. Kitchaev, and G. Ceder, "Rationalizing accurate structure prediction in the meta-GGA SCAN functional", *Phys. Rev. B*, vol. 100, no. 3, p. 35132, 2019. DOI: 10.1103/PhysRevB.100.035132.
- [13] Y. Zhang, D. A. Kitchaev, J. H. Yang, T. Chen, S. T. Dacek, R. A. Sarmiento-Pérez, M. A. L. Marques, H. Peng, G. Ceder, J. P. Perdew, and J. Sun, "Efficient first-principles prediction of solid stability: Towards chemical accuracy", *npj Comput. Mater.*, vol. 4, no. 1, p. 9, 2018. DOI: 10.1038/s41524-018-0065-z.
- [14] C. F. Brasz, J. H. Yang, and C. B. Arnold, "Tilting of adjacent laser-induced liquid jets", *Microfluid. Nanofluid.*, vol. 18, no. 2, pp. 185–197, 2015. DOI: 10.1007/s10404-014-1429-4.

In preparation

- H. Yang, J. H. Yang, B. Kozinsky, and J. J. Vlassak, "Complex ion crosslinked on-demand-dissociable chitosan with extended working pH range".
- J. H. Yang[†], A. W.-S. Ooi, Y. Xie, Z. A. Goodwin, J. Ding, S. Falletta, A.-H. A. Park, and B. Kozinsky[†], "Thermal decomposition of the ethaline deep eutectic solvent".
- Z. A. Goodwin, J. H. Yang, M. B. Wenny, A. Cepellotti, A. Johansson, L. Sun, S. Batzner, A. Musaelian, J. A. Mason, N. Molinari, and B. Kozinsky, "Chemically accurate ionic liquid simulations via graph neural nets".
- D. Morgan, B. Kozinsky, V. Honavar, *et al.*, "A Practical Guide to Machine Learning Potentials Status and Future".
- * equal contribution | † corresponding author | 6 first-author | 2 corresponding-author

PATENTS

- [1] J. H. Yang, V. Gharakhanyan, T. Gadhiya, and A. Holiday, "Ionic liquid-based depolymerization optimization", U.S. Patent App. 17/967,711, filed Oct. 17, 2022.
- T. Gadhiya, F. Shah, N. Vyas, V. Gharakhanyan, J. H. Yang, and A. Holiday, "Depolymerizeration optimization platform", U.S. Patent App. 17/967,723, filed Oct. 17, 2022.
- [3] V. Gharakhanyan, J. H. Yang, T. Gadhiya, and A. Holiday, "Search for candidate molecules using quantum or thermodynamic simulations and autoencoder", U.S. Patent App. 17/967,704, filed Oct. 17, 2022.
- [4] T. Ghadiya, F. Shah, N. Vyas, J. H. Yang, V. Gharakhanyan, and A. Holiday, "Molecular structure transformers for property prediction", U.S. Patent App. 17/967,685, filed Oct. 17, 2022.

INVITED ORAL PRESENTATIONS

- [1] A. Holiday, J. H. Yang, V. Gharakhanyan, and T. Gadhiya. (Presentation title withheld due to non-disclosure agreements.) Google X Techforum, Oct. 12, 2021. Presented virtually.
- [2] J. H. Yang. "Sustainability Challenges in Energy Storage Materials", SOSV, a global venture capital firm, June 28, 2022, San Francisco, CA.
- [3] J. H. Yang. "Atom-by-Atom Design of Sustainable Energy Storage Solutions", Virginia Polytechnic Institute and State University (Virginia Tech), Department of Chemistry Seminar, Dec. 6, 2023, Blacksburg, VA.
- [4] J. H. Yang. "Atom-by-Atom Design of Sustainable Energy Storage Solutions", The University of North Carolina at Chapel Hill, Department of Applied Physical Sciences, Jan. 8, 2024, Chapel Hill, NC.

ORAL PRESENTATIONS

- J. H. Yang, W.-S. A. Ooi, A.-H. A. Park, and B. Kozinsky, "Assessing thermal decomposition reactions in the ethaline green solvent using machine learned interatomic potentials", ACS Fall Meeting, August 13, 2023, San Francisco, CA.
- [2] J. H. Yang, W.-S. A. Ooi, K. Bystrom, A.-H. A. Park, and B. Kozinsky, "Computational Optimization of Nickel Metal Recovery from Li-ion Cathodes for a Circular Economy in Energy Storage", MRS Spring Meeting, April 12, 2023, San Francisco, CA.
- [3] J. H. Yang, K. Bystrom, and B. Kozinsky, "Understanding Metal Ion Interactions in Solvents Using First-Principles and Machine Learning Interatomic Potentials", APS March Meeting, March 6, 2023, Las Vegas, NV.
- [4] J. H. Yang. "Modeling high-component disordered systems for sustainable energy storage materials." U.C. Berkeley Materials Science and Engineering Spring Seminar, March 10, 2022, Berkeley, CA.

- [5] J. H. Yang and G. Ceder, "Ab initio Modeling of Configurational Disorder in Complex Systems by Combining Machine Learning and Cluster Expansions", MRS Fall Meeting, Nov. 29-Dec. 2, 2021, Cambridge, MA.
- [6] J. H. Yang and G. Ceder. "Thermodynamics of Spinel-like Cation Partial Ordering in Ultrahigh Power and Energy Density Li-ion Batteries for Fast-Charging Electric Vehicles." PRiME 2020 (ECS, ECSJ, & KECS Joint Meeting), Oct. 4-9, 2020. Presented virtually.
- [7] J. H. Yang, D. A. Kitchaev, and G. Ceder, "Benchmarking the Structure Selection Performance of the SCAN Functional Relative to PBE and PBE-D3", APS March Meeting, March 4-8, 2019. Boston, MA
- [8] J. H. Yang, C. F. Brasz, and C. B. Arnold, "Time-resolved Imaging Studies of Adjacent Liquid Jet Formation", APS Division of Fluid Dynamics Meeting, Nov. 24-26, 2013. Pittsburgh, PA.

POSTER PRESENTATIONS

 J. H. Yang and G. Ceder, "Modeling high-component, disordered rocksalt (DRX) systems for high-energy density Li-ion rechargeable batteries", Gordon Research Conference on Batteries, Feb. 16-21, 2020. Ventura, CA.

Teaching & Mentoring

Guest lecturer on DFT Carnegie Mellon University	April 2021
18-817: Fundamentals of Semiconductors and Nanostructures (graduate-level)	
• Graduate Student Instructor U.C. Berkeley	Aug. 2019–Dec. 2019
MSE–201A: Thermodynamics and Phase Transformations in Solids (graduate-level)	
Volunteer instructor Berkeley High School	Sept. 2016-May 2017
Berkeley Energy and Resources Collaborative High School Program	
Course Assistant Carnegie Mellon University	Sept. 2015–Dec. 2015
15-112: Fundamentals of Programming (undergraduate-level)	
Academic Development Peer Tutor Carnegie Mellon University	Jan. 2013–May 2016
All core MSE courses (undergraduate-level)	
Research Mentor	2017–present
Students mentored:	
Whai-Shin Amanda Ooi, Ph.D. student, Columbia University Chemical Engineering	g July 2022–present
Zinab Jadidi, Ph.D. student, U.C. Berkeley Materials Science & Engineering	March 2020–May 2022
Ronald Kam, Ph.D. student, U.C. Berkeley Materials Science & Engineering	Sept. 2021–May 2022
<u>Ryan Riddle</u> , Master's student, U.C. Berkeley Computer Science	Sept. 2017–May 2018
SERVICE	

• Session chair

MRS Fall 2021 | Symposium CH04 | Accelerating Materials Characterization,Modeling, and Discovery by Physics-Informed Machine LearningBoston, MAACS Fall 2023 | ACS Division of Computers In Chemistry | Materials Science ISan Francisco, CAACS Fall 2023 | ACS Division of Computers In Chemistry | Drug DesignSan Francisco, CA

• Discussion leader	
ACS Fall 2023 What to Expect from Graduate School	San Francisco, CA
• Reviewer	Mar. 2022–present
MRS Energy & Sustainability (1), npj Computational Materials (1), ACS Materia	ls Letters (2)
• Reviewer	Jan. 2023
Harvard SEAS Graduate Admissions	
Lab Representative	Nov. 2023
Undergraduate Research Open House for Harvard freshmen and sophomores	
Proposals	
• Harvard University Two-year independent postdoctoral proposal funded by Harvard University Center Award: \$170,000.	for the Environment July 2022-July 2024
Department of Defense	
Three-year independent graduate school proposal funded by the NDSEG Fellowshi Award: \$90,000.	ip Aug. 2016 -July 2019
Semiconductor Research Corporation (SRC)	
Five-semester independent undergraduate research funded by the SRC Undergradu Opportunity (URO) Program Award: \$10,000.	uate Research Jan. 2014 -May. 2016
SUILLO	

SKILLS

- **Programming:** Python, bash, R
- **Computational:** density functional theory, computational chemistry, Monte Carlo methods, cluster expansion method, molecular dynamics, machine learning interatomic potentials
- Experimental: Electrochemical analysis, laser induced forward transfer

References

• Gerbrand Ceder

Samsung Distinguished Chair in Nanoscience and Nanotechnology Research Department of Materials Science and Engineering University of California, Berkeley gceder@berkeley.edu

• Boris Kozinsky

Thomas D. Cabot Associate Professor of Computational Materials Science Harvard John A. Paulson School of Engineering and Applied Sciences Harvard University bkoz@seas.harvard.edu

• Ah-Hyung Alissa Park

Ronald and Valerie Sugar Dean and Professor Department of Chemical and Biomolecular Engineering University of California, Los Angeles apark@seas.ucla.edu

• Alexander Holiday

Senior Machine Learning Engineer X, the Moonshot Factory Milwaukee, WI aholiday@x.team